三角形海绵厂家(三角形海伦公式)
大家好,小秋来为大家解答以上的问题。三角形海绵厂家,三角形海伦公式这个很多人还不知道,现在让我们一起来看看吧!
1、海伦公式表达式为:S=√p(p-a)(p-b)(p-c)。
2、海伦公式利用三角形的三条边的边长直接求三角形面积的公式。
3、表达式为:S=√p(p-a)(p-b)(p-c),它的特点是形式漂亮,便于记忆。
4、相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以被称为海伦公式。
5、中国秦九韶也得出了类似的公式,称三斜求积术。
6、扩展资料海伦公式的提出为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用海伦公式可以更快更简便的求出面积。
7、比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。
8、他建立的求积公式,比中国宋代的数学家秦九韶早一千多年。
9、参考资料来源:百度百科-海伦参考资料来源:百度百科-海伦公式已知三角形三边a,b,c,则:(海伦公式)(p=(a+b+c)/2)S=sqrt[p(p-a)(p-b)(p-c)]=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]扩展资料:古希腊的数学发展到亚历山大里亚时期,数学的应用得到了很大的发展,其突出的一点就是三角术的发展,在解三角形的过程中,其中一个比较难的问题是如何利用三角形的三边直接求出三角形面积。
10、这个公式是由古希腊数学家阿基米德得出的,但人们常常以古希腊的数学家海伦命名这个公式,称此公式为海伦公式,因为这个公式最早出现在海里的著作《测地术》中,并在海伦的著作《测量仪器》和《度量数》中给出证明。
11、中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它完全与海伦公式等价,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2边长分别为a、b、c,三角形的面积S: S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2海伦公式的渊源和意义。
本文到此分享完毕,希望对大家有所帮助。
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时候联系我们修改或删除,多谢。